Envelope Protein Mutations L107F and E138K Are Important for Neurovirulence Attenuation for Japanese Encephalitis Virus SA14-14-2 Strain

نویسندگان

  • Jian Yang
  • Huiqiang Yang
  • Zhushi Li
  • Wei Wang
  • Hua Lin
  • Lina Liu
  • Qianzhi Ni
  • Xinyu Liu
  • Xianwu Zeng
  • Yonglin Wu
  • Yuhua Li
چکیده

The attenuated Japanese encephalitis virus (JEV) strain SA14-14-2 has been successfully utilized to prevent JEV infection; however, the attenuation determinants have not been fully elucidated. The envelope (E) protein of the attenuated JEV SA14-14-2 strain differs from that of the virulent parental SA14 strain at eight amino acid positions (E107, E138, E176, E177, E264, E279, E315, and E439). Here, we investigated the SA14-14-2-attenuation determinants by mutating E107, E138, E176, E177, and E279 in SA14-14-2 to their status in the parental virulent strain and tested the replication capacity, neurovirulence, neuroinvasiveness, and mortality associated with the mutated viruses in mice, as compared with those of JEV SA14-14-2 and SA14. Our findings indicated that revertant mutations at the E138 or E107 position significantly increased SA14-14-2 virulence, whereas other revertant mutations exhibited significant increases in neurovirulence only when combined with E138, E107, and other mutations. Revertant mutations at all eight positions in the E protein resulted in the highest degree of SA14-14-2 virulence, although this was still lower than that observed in SA14. These results demonstrated the critical role of the viral E protein in controlling JEV virulence and identified the amino acids at the E107 and E138 positions as the key determinants of SA14-14-2 neurovirulence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Determinants of Japanese Encephalitis Virus Vaccine Strain SA14-14-2 That Govern Attenuation of Virulence in Mice.

UNLABELLED The safety and efficacy of the live-attenuated Japanese encephalitis virus (JEV) SA14-14-2 vaccine are attributed to mutations that accumulated in the viral genome during its derivation. However, little is known about the contribution that is made by most of these mutations to virulence attenuation and vaccine immunogenicity. Here, we generated recombinant JEV (rJEV) strains containi...

متن کامل

Molecular basis of attenuation of neurovirulence of wild-type Japanese encephalitis virus strain SA14.

To identify the molecular determinants for attenuation of wild-type Japanese encephalitis (JE) virus strain SA14, the RNA genome of wild-type strain SA14 and its attenuated vaccine virus SA14-2-8 were reverse transcribed, amplified by PCR and sequenced. Comparison of the nucleotide sequence of SA14-2-8 vaccine virus with virulent parent SA14 virus and with two other attenuated vaccine viruses d...

متن کامل

A Molecularly Cloned, Live-Attenuated Japanese Encephalitis Vaccine SA14-14-2 Virus: A Conserved Single Amino Acid in the ij Hairpin of the Viral E Glycoprotein Determines Neurovirulence in Mice

Japanese encephalitis virus (JEV), a mosquito-borne flavivirus that causes fatal neurological disease in humans, is one of the most important emerging pathogens of public health significance. JEV represents the JE serogroup, which also includes West Nile, Murray Valley encephalitis, and St. Louis encephalitis viruses. Within this serogroup, JEV is a vaccine-preventable pathogen, but the molecul...

متن کامل

Characterization of the E-138 (Glu/Lys) mutation in Japanese encephalitis virus by using a stable, full-length, infectious cDNA clone.

A stable plasmid DNA, pMWJEAT, was constructed by using full-length Japanese encephalitis virus (JEV) cDNA isolated from the wild-type strain JEV AT31. Recombinant JEV was obtained by synthetic RNA transfection into Vero cells and designated rAT virus. JEV rAT exhibited similar large-plaque morphology and antigenicity to the parental AT31 strain. Mutant clone pMWJEAT-E138K, containing a single ...

متن کامل

Single mutation in the flavivirus envelope protein hinge region increases neurovirulence for mice and monkeys but decreases viscerotropism for monkeys: relevance to development and safety testing of live, attenuated vaccines.

A chimeric yellow fever (YF) virus/Japanese encephalitis (JE) virus vaccine (ChimeriVax-JE) was constructed by insertion of the prM-E genes from the attenuated JE virus SA14-14-2 vaccine strain into a full-length cDNA clone of YF 17D virus. Passage in fetal rhesus lung (FRhL) cells led to the emergence of a small-plaque virus containing a single Met-->Lys amino acid mutation at E279, reverting ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017